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ABSTRACT

The process of target nucleus fragmentation by energetic protons is examined and their effects on

microelectronic devices considered. A formalism for target fragment transport is presented with future

applications to microelectronic effects discussed.
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Introduction

Since the early suggestion that some spacecraft anomalies may result from the passage of the

galactic ions through microelectric circuits (ref. 1), it has now been well established as a fact. Although
the direct ionization of protons appear as unlikely candidates, their nuclear reaction products are

suspected as a source of Single Event Upset (SEU) phenomena (ref. 2-4). As a result a number of

fundamental experimental and theoretical studies were undertaken to better understand the phenom-

ena. McNulty and coworkers examined the energy deposition of proton reaction products in Si using
surface barrier detectors of various thickness from 2.5 to 200/tm (ref. 5). They also developed a Monte

Carlo code for theoretical evaluation of energy deposition from such products (ref. 5,6). Comparisons

of McNulty's work with the well established MECC7 developed by Bertini and cow0rkers at Oak Ridge
National Laboratory showed some differences in predicted reaction products and even greater differ-

ences in energy spectral contributions (ref. 7). An evaluation of Si reaction products was likewise made

by Petersen (ref. 4), and although no direct comparison was made to McNuity's experiments, an estimate
of SEU rates in the trapped proton environment was made.

Following these fundamental studies came more detailed application to devise specific questions.

Bradford evolved an energy deposition formalism (ref. 8) using the cross sections of Hamm et. al. (ref.
7). The McNuity Group applied the Monte Carlo model to DRAM devices with reasonable success and

discussed the implications of heavy ion SEU phenomena on proton induced SEU events through

secondary reaction processes (ref. 9). The fundamental consideration is the evaluation of the energy

deposited within the sensitive volume (depletion region) of the device in question due to a passing
proton. The ionization of the proton itself makes only a small contribution to the critical charge. Nuclear
reacti0n events usually produce several reaction products (usually a heavy fragment and several lighter

particles although a few heavy fragments may be produced simultaneously on some occasions) and all

of the resultant products can make important contributions to the energy deposited. Such nuclear event
products are of course correlated in both time and space.

There are three distinct approaches to a fundamental description of the energy deposition events.
McNulty and coworkers have developed a Monte Carlo code in which multiparticle events are

calculated explicitly including spatial and specific event (temporal) correlation effects. Although this is

the most straightforward way of treating the full detail, it is a complex computational task. A second
class of methods begins with the volumetric source of collision events and calculates the SEU probability

using the cord length distribution (ref. 8,10). Although in principle the correlation effects could be so
incorporated, they appear to be ignored in both of the cited references. A third approach, in which LET

distributions and cord length distributions are used, seems most appropriate for external sources (ref.
11,12). It would seem that this last approach applies if the LET distribution from external sources is

constant over the sensitive volume but its applicability to volumetric sources is questionable. At the

very least this approach ignores correlation effects.

In an earlier work we examined nuclear data bases for biological systems (ref. 13). In that work

we found that the MECC7 results underestimated by nearly a factor of two the cross section for multiple

charged ion products. In a more detail analysis, we found the Silberberg-Tsao fragmentation parameters

to be superior to the MECC7 results (ref. 14). The primary differences appear for the lighter of the
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multiple charged fragments. Further comparison with experiments of AI targets show all three Monte
Carlo nuclear models (OMNI, VEGAS as well as MECCT) to underestimate production cross sections

for products lighter than fluorine in proton induced reaction. Although these intranuclear cascade

models are capable of representing multiparticle correlation, the inherent inaccuracies in predicting

cross sections is a serious limitation. In the present paper we examine the implication of the nuclear

recoil effects on electronic devices and begin the development of a formalism for application to specific

device parameters.

Microelectronie Upsets

An electronic device is sensitive to the sudden introduction of charge into active elements of its

circuits. The amount of such charge which is sufficient to change state in a logic circuit is called the
critical charge. There is a rough relationship between the critical charge Qc and the device feature size

L (ref. 11) as shown in Fig. 1. This relationship is approximately

Oc = 0-0156L 2 (1)

where Qc has units pC and L has unitspm. Upsets in a device are then dependent on the charge produced
compared to the critical charge.

The charge released AQ in a material due to the passage of an energetic ion is related to the kinetic
energy lost AE during the passage given by

AE
AQ = 22.5 (2)

where AQ has units pC and AE has units MeV.

dE-The energy lost by an ion in passing through a region is related to its stopping power(- Sz(E,)) in the medium. The distance traveled before coming to rest is

t_E dE,
Rz(E) = J0 -_zz(E,)" (3)

If an ion is known to come to rest in distance x then its energy is found through the inverse of the

relation (3) as

E = Rz 1 (x) (4)

and we note that equation (4) is used to calculate energy loss. The energy loss by an ion of charge Z
and energy E in passing through a device with collection length L will have its energy reduced by

AE = E - Rz 1 [Rz(E) -I-x] (5)

and
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Le m Wepi + Wn (6)

where Wcpi is the epi thickness and Wn is the depletion width.

We note in passing that AE does not depend on the particle isotope (i.e., ion mass). The range
energy relations described elsewhere (ref. 14) are utilized. As a practical matter to reduce numerical
error inherent to numerical interpolation, we use

AE = R; q [Rz(E)] - Rz-1 [Rz(E) -Lc] (7)

in place of equation (5). Note the result of equation (5) depends on the global error (fixed at 1 percent)
of the code while equation (7) depends only on the local relative error (quite small). The charge

introduced is givenbyequation (2_and (7). An example of a particular collection length of2¢1 m isshown

in Fig. 2 for each ion type. We assume a simplified geometry in which the channel length and width and
the collection length are take as equal to the feature size. We take the critical energy as the upper and

lower limit of the range of energy for which

AQ(E)>-Qc (8)

which depends on the feature size L. The ion mass for each A is taken as the natural mass. The critical

energies are shown in Fig. 3. Also shown in Fig. 3 are the average recoil energy from the fragmentation
16 28

of O and Si produced by collision with a high energy proton (ref. 14).

It is doubtful that any of the fragments are produced in the 4pro and larger devices (note that we
have used simplified geometries). Also, the lighter fragments of Li, He, and H are not suspected for

SEU events, at least in this simple geometry. Also note that Fig. 3 is applicable to cosmic ray ions.

Nuclear Fragmentation Cross Section

Although nuclear fragmentation has been under study for nearly 50 years, the absolute cross

sections still stir some controversy. The experimental problem is that the reaction products could be

directly observed only in recent years and even now only in rather sophisticated experiments. Rudstam

studied the systematics of nuclear fragmentation and supposed the fragment isotopes to be distributed

in a bell-shaped distribution about the nuclear stability line (ref. 15). Silberberg et al. continued the
Rudstam parametric approach and added many correction factors as new experimental evidence

became available (ref. 12).

Concurrently, Mont_e Carlo simulation of the Serber model (ref. 16) coupled with final decay
through compound nuclear models showed some success (ref. 7, 17). Even so, Monte Carlo simulations

show little success in predicting fragments whose mass is small compared to the original target nuclear
mass (ref. 13,18). Of the various models for nucleon induced fragmentation in 28Si, probably that of

Silberberg et al. (ref. 12) is currently most reliable. The main limitation of their model is that only
inclusive cross sections are predicted and particle correlations will undoubtedly prove important in

predicting SEU.

Measurements of 27Al fragmentation in proton beams have been made by Kwaitkowski (ref. 18).

These experiments are compared in Fig. 4 to the Monte Carlo results of OMNI, VEGAS, and MECC7.
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Also shown are the results of Silberberg et al. Generally the Silberberg et al. results appear to be within

a factor of 2 of the experiments and this is the only model which predicts significant contributions in

the important range below Zf = 6.

The spectrum of average recoil energy is calculated using the Silberberg - Tsao cross sections and
compared with the spectrum according to Bertini cross sections in Fig. 5. The Bertini cross section is a

serious underestimate above 8 MeV and greatly overestimates below 3 MeV. Experimental evidence

indicates that even the Silberberg-Tsao values are too small above 6 MeV (ref. 18).

Nuclear Recoil Transport

The transport of the recoil fragments is described by the following

[Q. V -_E Sz (E)]_z (x,Q,E) = _z (Q,E) (9)

where _z (x,Q,E) is the ion flux and _z(Q,E) is the ion source density assumed to be uniformly distributed

through the media. The solution to equation (9) is to be found in the closed region bounded by the
surface F subject to the boundary condition

Cz(r,Q,E) = Fz(fLE) for n. Q <1 (10)

where n is the outward directed normal. The solution as found using the method of characteristic (ref.
19) is:

Cz (x,Q,E) _ 4'z (r,Q,Eb) + 1 J_E= Sz(E) Sz(E) Cz(Q,E,)dE, (11)

where F is taken as the point on the boundary by projecting x along -Q and

Et, =Rz 1 [Rz(E) + b] (12)

where

b = Q.(x - F). (13)

Using equation (11), we may evaluate the spectrum of particles leaving the region which can be related
to the spectrum of energy deposited in the media. Such a task will be completed in the near future.
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CRITICAL CHARGE FOR SINGLE EVENT UPSETS
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Figure 1
Critical charge Qc as a function of feature size.
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Figure 2

Charge collected as a function of ion energy.
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Figure 3

Critical energy as a function of ion charge for several
feature sizes.

379



I00

rio

x_3 60
12

i;
t,O

211

,-,-r I, v t|'v-v" I-"v-'-l- r'-Vl rv-V-l'r_ -ri.
i,

- ........MECC/ ""

VEGAS
.... OMNI

°

• Sllherberg-Tsao
• Kwallkowskl et al.

,, . ,'

_,.l_Y..I_,..L _:;",_,.L't_v_l.L.L.L
4 (I I;

b

P

I

r

O

16
A

_I_LLL.I .L,_oJ
20 21. 20

Figure 4

Fragmentation of 27A1according to four models and the

experiments of Kwaitkowski et al.
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Figure 5

Spectrum of average recoil energy for the Bertini and

the Silberberg-Tsao models.
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